p-value in Statistic Inference P397 Theorem 8.3.27
stochastically greater
Definition
A cdf $F_X$ is stochastically greater than a cdf $F_Y$ if $F_X(t) \le F_Y(t)$ for all $t$ and $F_X(t) <F_Y(t) $ for some $t$.
That is, $X$ tends to be bigger than $Y$. Now, we investigate the relationship between discrete random variables and uniform random variables.
Corollary
Let $X$ be a discrete random variable with cdf $F_X(x)$ and define the random variables $Y$ as $Y=F_X(X)$ then, $Y$ is stochastically greatly than a $uniform(0,1)$.
Proof
We assume that $X$ have the distribution that
$$
\begin{equation}
X \sim \left(
\begin{aligned}
x_1 & & x_2 & \dots & x_n\
p_1 & & p_2 & \dots & p_n
\end{aligned}
\right)
\end{equation}
$$
then we can get $F_X$
$$
\begin{equation}
F_X(t)= \left{
\begin{aligned}
&0 & & t<x_1\
&p_1 & & x_1\le t<x_2\
&\vdots & & \vdots \
&p_1+p_2+\dots+p_{n-1} & & x_{n-1}\le t<x_n\
&p_1+p_2+\dots+p_{n}=1 & & t\ge x_n
\end{aligned}
\right.
\end{equation}
$$
$Y=F_X(X)$ so, $P(Y>y)=P(F_X(X)>y)=P(X:F_X(X)>y)$
For example
$$
\begin{aligned}
P(Y>p_1+p_2+\dots+p_{n-1}+\frac{1}{2}p_n)=& P(F_X(X)>p_1+p_2+\dots+p_{n-1}+\frac{1}{2}p_n)\
= & P(X:F_X(X)>p_1+p_2+\dots+p_{n-1}+\frac{1}{2}p_n)\
= &P(X=a_n)=p_n
\end{aligned}
$$
Like this, we can prove Y is stochastically greater than uniform distribution. This Corollary can be used in proofing the Theorem in p-value.